Circumstellar dust and influence of the hot component in symbiotic Miras

Tomislav Jurkić
Department of Physics
University of Rijeka, Croatia

Collaborators:
Dubravka Kotnik-Karuza (Univ. of Rijeka)
Lovro Pavletić (Univ. of Rijeka)
Dejan Vinković (ISZD)
Darko Jevremović (Astr. Obs. Belgrade)
D-TYPE SYMBIOTICS

- well-detached binary system (separation of the order >50 AU)

Mira component

Substantial near- and mid-infrared excess ⇒ **presence of dust**

SLOW NOVA ⇒ long lasting recovery phase (few decades):

RR Tel: outburst in 1944. (Mayall, 1949)
V1016 Cyg: outburst in 1964. (McCuskey, 1965)
HM Sge: outburst in 1975. (Dokuchaeva, 1976)

Pulsational periods:
RR Tel: 387 days (Feast+, 1983)
V1016 Cyg: 478 days (Munari, 1988)
HM Sge: 527 days (Yudin+, 1994)

Luminosities: 6000 – 11000 L_{Sun}
MODEL DEGENERACY:
Single vs. two dust shells (HM Sge)

Schild+ (2001):

<table>
<thead>
<tr>
<th>Model</th>
<th>Temp 1</th>
<th>Temp 2</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO SHELL MODEL</td>
<td>1400 K</td>
<td>800 K</td>
<td>thick</td>
</tr>
<tr>
<td>(T_{dust})</td>
<td>700 K</td>
<td>900 K</td>
<td>thin</td>
</tr>
<tr>
<td>(\tau_v)</td>
<td>1.9</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Bogdanov & Taranova (2001):

<table>
<thead>
<tr>
<th>Model</th>
<th>Temp Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE SHELL MODEL</td>
<td>700 – 900 K</td>
</tr>
<tr>
<td></td>
<td>10 – 13</td>
</tr>
</tbody>
</table>

\[\lambda F(\lambda), 10^{-9} \text{erg s}^{-1} \text{cm}^{-2} \]

![Graph 1]

![Graph 2]
RECENT MODELS

Colliding wind model (Angeloni+, 2010):
- two dust shells: 400 K & 1000 K black body

Black body shells:
Only part of the shell close to the shock front strongly emits

Problem \(\Rightarrow \) 10 \(\mu \)m feature is typical silicate feature, not black body emission!
RECENT MODELS: HM SGE

Sacuto & Chesneau (2009) – IR spectroscopy + interferometry
Single-shell model
Sublimation dust temperature: $T = 1600 \, \text{K}$
Visual optical depth: 25
Density distribution: almost steady-state wind
OBSERVATIONS

Near IR JHKL observations from South African Astronomical Observatory and Crimean observatory

12 symbiotic Miras

Light curve – corrected for Mira pulsations

Obscuration events
I. 1986 – 1991
II. 1991 – 1995
III. 1996 –

Jurkic & Kotnik-Karuza (2012)
SEARCH FOR PERIODICITY IN LIGHT CURVES

Long-term periods:

RR Tel 6800 d (18.5 yrs)
AS 210 7000 d (19 yrs)
V366 Car 6000 d (16.5 yrs)
HM Sge 9200 d (25 yrs)

- Phase dispersion minimization and Discrete Fourier Transforms
- orbit 8-10 AU from the Mira in RR Tel??
- dust at inner dust shell radius??

Jurkic & Kotnik-Karuza (2012)
OBSERVATIONS

No major impact of nova eruption on dust!

Mechanism of dust shielding from UV radiation of hot component?

Jurkic & Kotnik-Karuza (2017)
DUSTY model
(Miroshnichenko, Ivezić, Vinković, Elitzur)

DUSTY solves radiation transfer through dust environment:

- spherical or axial symmetry
- includes absorption, scattering & emission
Density distribution

scale-free: relevant parameter – scaled radius y:

$$y = \frac{r}{r_{in}} \quad \eta \propto \frac{1}{y^p}$$

r_{in} – inner dust shell radius (sublimation radius)

p – power index

Radiatively driven winds:

$$\eta \propto \frac{1}{y^2} \sqrt{\frac{y}{y-1+(v_i/v_e)^2}}$$

MRN grain size distribution (Mathis+, 1977)
RR TEL – OBSCURATION EVENT

ISO SWS spectra + SAAO JHKL
Phase difference: 0.49 (188 days)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RR Tel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{Mira} (K)</td>
<td>2350</td>
</tr>
<tr>
<td>T_{dust} (K)</td>
<td>1200 – 1350</td>
</tr>
<tr>
<td>a_{max} (µm)</td>
<td>4.0 – 4.7</td>
</tr>
<tr>
<td>τ_v</td>
<td>5.0 – 5.5</td>
</tr>
<tr>
<td>\dot{M} (10^-6 M(_{Sun}/yr))</td>
<td>6 – 8</td>
</tr>
</tbody>
</table>

Jurkic & Kotnik-Karuza (2017)
HM SGE: Interferometry

MIDI VLTI 8-13 μm (Sacuto & Chesenau 2009, Sacuto+ 2007)
RR TEL: OUTSIDE OBSCURATION

LELUYA code (Vinkovic, 2003; Balick+, 2012)
2D radiative transfer code, unstructured self-adaptive grid

spherical distribution
equatorially enhanced distribution
RR TEL: OUTSIDE OBSCURATION

1996/03/20

\[\lambda F_\lambda \left(10^{-12} \, \text{W/m}^2\right) \]

\[\lambda \, (\mu\text{m}) \]

line of sight
LONG-TERM DUST PROPERTIES

Obscurations in near-IR \Rightarrow explained by change in dust optical depth
Dust optical depth changes in time \Rightarrow evolution of dust shell

LONG-TERM DUST PROPERTIES
DUST PROPERTIES

<table>
<thead>
<tr>
<th>Symbiotic Mira</th>
<th>Luminosity (L_{Sun})</th>
<th>T_{cond} (K)</th>
<th>a_{max} (μm)</th>
<th>τ_V</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI Cru</td>
<td>4600</td>
<td>1200 – 1400</td>
<td>1 – 2</td>
<td>3.2 – 6.5</td>
</tr>
<tr>
<td>O Cet</td>
<td>6100</td>
<td>1100</td>
<td>0.15</td>
<td>0.4 – 3.4</td>
</tr>
<tr>
<td>KM Vel</td>
<td>7000</td>
<td>1150</td>
<td>0.15</td>
<td>8.3 – 12.6</td>
</tr>
<tr>
<td>R Aqr</td>
<td>7300</td>
<td>650</td>
<td>3.5</td>
<td>0.6 – 8.8</td>
</tr>
<tr>
<td>RR Tel</td>
<td>7400</td>
<td>1250</td>
<td>0.15</td>
<td>1.6 – 6.3</td>
</tr>
<tr>
<td>V835 Cen</td>
<td>7600</td>
<td>950</td>
<td>12 – 20</td>
<td></td>
</tr>
<tr>
<td>AS 210**</td>
<td>8000</td>
<td>1100 - 1300</td>
<td>0.5 – 1</td>
<td>1.5 – 5</td>
</tr>
<tr>
<td>V366 Car</td>
<td>8400</td>
<td>1000</td>
<td>0.15</td>
<td>15</td>
</tr>
<tr>
<td>V1016 Cyg</td>
<td>9200</td>
<td>1000 – 1200</td>
<td>1 – 4</td>
<td>2 – 6</td>
</tr>
<tr>
<td>SS73 38**</td>
<td>9200</td>
<td>900 – 1300</td>
<td>0.25 – 1</td>
<td>2.2 – 6.3</td>
</tr>
<tr>
<td>HM Sge</td>
<td>11000</td>
<td>1150</td>
<td>2.1</td>
<td>3.2 – 9.0</td>
</tr>
<tr>
<td>RX Pup</td>
<td>12000</td>
<td>700, 900</td>
<td>1.8, 1.1</td>
<td>2.5 – 7.5</td>
</tr>
</tbody>
</table>
DUST PROPERTIES

<table>
<thead>
<tr>
<th>Symbiotic Mira</th>
<th>Luminosity (L_{Sun})</th>
<th>T_{cond} (K)</th>
<th>a_{max} (μm)</th>
<th>τ_V</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI Cru</td>
<td>4600</td>
<td>1200 – 1400</td>
<td>1 – 2</td>
<td>3.2 – 6.5</td>
</tr>
<tr>
<td>O Cet</td>
<td>6100</td>
<td>1100</td>
<td>0.15</td>
<td>0.4 – 3.4</td>
</tr>
<tr>
<td>KM Vel</td>
<td>7000</td>
<td>1150</td>
<td>0.1</td>
<td>8.3 – 12.6</td>
</tr>
<tr>
<td>R Aqr</td>
<td>7300</td>
<td>650</td>
<td>0.15</td>
<td>0.6 – 8.8</td>
</tr>
<tr>
<td>RR Tel</td>
<td>7400</td>
<td>1250</td>
<td>3.5</td>
<td>1.6 – 6.3</td>
</tr>
<tr>
<td>V835 Cen</td>
<td>7800</td>
<td>950</td>
<td>0.15</td>
<td>12 – 20</td>
</tr>
<tr>
<td>AS 210**</td>
<td>8000</td>
<td>1100 – 1300</td>
<td>0.5 – 1</td>
<td>1.5 – 5</td>
</tr>
<tr>
<td>V366 Car</td>
<td>8400</td>
<td>1000</td>
<td>0.15</td>
<td>15</td>
</tr>
<tr>
<td>V1016 Cyg</td>
<td>9200</td>
<td>1000 – 1200</td>
<td>1 – 4</td>
<td>2 – 6</td>
</tr>
<tr>
<td>SS73 38**</td>
<td>9200</td>
<td>900 – 1300</td>
<td>0.25 – 1</td>
<td>2.2 – 6.3</td>
</tr>
<tr>
<td>HM Sge</td>
<td>11000</td>
<td>1150</td>
<td>2.1</td>
<td>3.2 – 9.0</td>
</tr>
<tr>
<td>RX Pup</td>
<td>12000</td>
<td>700, 900</td>
<td>1.8, 1.1</td>
<td>2.5 – 7.5</td>
</tr>
</tbody>
</table>

Grain growth in symbiotic novae? ⇒ mass loss driven by radiation pressure on large grains
DUST PROPERTIES

Inner dust shell radius:
O-rich Miras: 3 – 7 R_*
C-rich Miras: 1.7, 2.3 R_*

- O-rich Miras condense dust further from the Mira component than C-rich Miras

- Slower (5-10 km/s) stellar wind in symbiotic Miras dominated by smaller dust grains
- Faster (15-30 km/s) stellar wind in symbiotic Miras dominated by larger dust grains → Symbiotic Novae
MASS LOSS

$L > 10000 L_{\odot}$
In agreement with long-period single O-rich AGB stars (van Loon+, 2005)

$L < 10000 L_{\odot}$
Higher than observed for single intermediate-period Miras (Jura & Kleinman, 1989, 1992)
CLOUDY (Ferland+, 2013)

- Spectral synthesis photoionization code ⇒ calculates emission, absorption and continuum spectra
- Simulation of physical conditions in circumstellar matter: ionization, chemical and thermal state of matter, gas heating and cooling, molecular environment
INFLUENCE OF THE HOT COMPONENT

PLUTO (Mignone+, 2012)
- Numerical code for solving hydrodinamical equations
- Adaptive grid
- Collision of fast low density stellar wind from hot component with slow high density stellar wind from cold component
INFLUENCE OF THE HOT COMPONENT

\[\log N_H = 8 \text{ cm}^{-3} \]

Jurkic & Kotnik-Karuza, in preparation
INFLUENCE OF THE HOT COMPONENT

\[\log N_H = 8 \text{ cm}^{-3} \]

thickness = 5 AU
SUMMARY

- Silicate/carbon dust shell around Mira can explain infrared observations of symbiotic Miras
 - inner shell radius determined by the condensation temperature of ~1200 K
 - density distribution enhanced by radiatively driven winds
- Obscuration events can be explained by change in dust optical depth
- Departure from spherical symmetry probably due to the presence of companion
- Long periodicity (~20 yrs): possibly connected with the dust at the inner shell radius
- Possible grain growth in symbiotic novae can increase stellar outflow driven by higher radiation pressure on larger grains
- Intermediate-period (lower luminosity) symbiotic Miras show higher mass loss than single Miras
- Long-period (higher luminosity) symbiotic Miras have mass loss is in agreement with longer period single O-rich AGBs
- Absence of significant dust destruction during and after nova outburst
- High-density gas region produced by collision between stellar winds can provide necessary shielding of dust from strong UV radiation
Thank you for your attention!

Tomislav Jurkic
tjurkic@phy.uniri.hr
University of Rijeka
Croatia