
CHAPTER 1 CRYSTAL STRUCTURES AND 
INTERATOMIC FORCES 

1.1 Introduction 
1.2 The crystalline state 
1.3 Basic definitions 
1.4 The fourteen Bravais lattices and the seven crystal 

systems 
1.5 Elements of symmetry 
1.6 Nomenclature of crystal directions and crystal planes; 

Miller indices 
I. 7 Examples of simple crystal structures 
1.8 Amorphous solids and liquids 
1.9 lnteratomic forces 

1.10 Types of bonding 

Good order is the foundation of all good things. 
Edmund Burke 
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QUESTIONS 

I. What is the reason for the fact that the tetrahedral bond is the dominant bond in 
carbon compounds? 

2. Estimate the strength of the hydrogen bond in water (in electron volts per 
bond). 

3. Show that two parallel electric dipoles attract each other. 
4. Estimate the strength of the van der Waals bond for neon. 

PROBLEMS 

1. Given that the primitive basis vectors of a lattice are a = (a/2)(i + j), b = (a/2Xj + k) 
and c = (a/2)(k + i), where i, j, and k are the usual three unit vectors along cartesian 
coordinates, what is the Bravais lattice? 

2. Using Table 1.2 and the data below, calculate the densities of the following solids: 
Al, Fe, Zn, and Si, whose atomic weights are respectively 26.98, 55.85, 65.37, and 
28.09. 

3. Show that in an ideal hexagonal-close-packed (hep) structure, where the atomic 
spheres touch each other, the ratio cf a is given by 

c ( 8 )1/2 
-;; = 3 = 1.633. 

(The hep structure is discussed in Section 7.) 
4 The packing ratio is defined as the fraction of the total volume of the cell that is 

filled by atoms. Determine the maximum values of this ratio for equal spheres 
located at the points of simple-cubic, body-centered-cubic, and face-centered-cubic 
crystals. 
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5. Repeat Problem 4 for simple hexagonal, and rhombohedral lattices.
6. Repeat Problem 4 for an hep structure.
7. Consider a -face-centered-cubic cell. Construct a primitive cell within this larger

cell, and compare the two. How many atoms are in the primitive cell, and how
does this compare with the number in the original cell?

8. a) Show that a two-dimensional lattice may not possess a 5-fold symmetry.
b) Establish the fact that the number of two-dimensional Bravais lattices is five:

Oblique, square, hexagonal, simple rectangular, and body-centered rectangular.
(The proof is given in Kittel, 1970.)

9. Demonstrate the fact that if an object has two reflection planes intersecting at rc/4,
it also possesses a 4-fold axis lying at their intersection.

10. Sketch the following planes and directions in a cubic unit cell: (122), [122], (112),
[IT2].

11. a) Determine which planes in an fee structure have the highest density of atoms.
b) Evaluate this density in atoms/cm2 for Cu.

12. Repeat Problem 11 for Fe, which has a bee structure.
13. Show that the maximum packing ratio in the diamond structure is n.JJ/16. [Hint:

The structure may be viewed as two interpenetrating fee lattices, arranged such
that each atom is surrounded by four other atoms, forming a regular tetrahedron.]

14. A quantitative theory of bonding in ionic crystals was developed by Born and
Meyer along the following lines: The total potential energy of the system is taken
to be

A ae2

E=N--N--
R" 4nE0R' 

where N is the number of positive-negative ion pairs. The first term on the right
represents the repulsive potential, where A and n are constants determined from
experiments. The second term represents the attractive coulomb potential, where 
a, known as the Made/ung constant, depends only on the crystal structure of the
solid. 
a) Show that the equilibrium interatomic distance is given by the expression

n-1 4nE0A
Ro = 2 

n.ae 
b) Establish that the bonding energy at equilibrium is

Eo = -

aNe
2 (1 - �) . 

4nE0R0 n 
c) Calculate the constant n for NaCl, using the data in Table 1.2 and the fact that

the measured binding energy for this crystal is 1.83 kcal/mole (or 7.95 eV/mole­
cule). The constant a for NaCl is 1.75.



CHAPTER 2 X-RAY, NEUTRON, AND ELECTRON 
DIFFRACTION IN CRYSTALS 

2.1 Introduction 
2.2 Generation and absorption of x-rays 
2.3 Bragg's law 
2.4 Scattering from an atom 
2.5 Scattering from a crystal 
2.6 The reciprocal lattice and x-ray diffraction 
2. 7 The diffraction condition and Bragg's law 
2.8 Scattering from liquids 
2.9 Experimental techniques 

2.10 Other x-ray applications in solid-state physics 
2.11 Neutron diffraction 
2.12 Electron diffraction 

A II things visible and invisible. 
The Book of Common Prayer 
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Neutron diffraction 
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P. A. Egelstaff, editor, 1965, Thermal Neutron Scattering, New York: Academic Press 

Electron diffraction 
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Liquids 

P.A. Egelstaff, 1967, An Introduction to the liquid State, New York: Academic Press 

QUESTIONS 

I. What is the justification for drawing the scattered rays in Fig. 2.2(a) as nearly
parallel?

2. In the scattering of x-rays by electrons, there is a small probability that the photon
may suffer Compton scattering by the electron-this in addition to the scattering
considered in this chapter, which is known as Thompson scattering. Compton
scattering is inelastic, and the photon loses some of its energy to the electron; the
energy loss depends on the scattering angle. Would you expect Compton
scattering to produce a diffraction pattern? Why or why not?

3. It was stated following Eq. (2.6) that the amplitude of the wave decreases as the
inverse of the radial distance from the scattering center. Justify this on the basis
of energy conservation.

4. The crystal scattering factor fcr of (2. 19) is a complex number. What is the
advantage of using complex representation?

5. Diamond and silicon have the same type of lattice structure, an fee with a basis,
but different lattice constants. Is the lattice structure factor S the same for both
substances?

6. A reciprocal-lattice vector has a dimension equal to the reciprocal of length,
for example, cm-1• Is it meaningful to compare the magnitudes of a direct-lattice
vector R with a reciprocal-lattice vector G? Is it meaningful to compare their
directions? If the latter answer is yes, find the angle between R and G in terms of
their components in a cubic crystal. What is the angle between R = [111] and
G = [110]?

7. Does a real lattice vector have a corresponding unique reciprocal vector?
8. Draw a figure illustrating momentum conservation in the Bragg reflection considered

as a photon-crystal collision. Why is this collision elastic? Justify your answer
with numerical estimates.
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9. \Vhy is the energy of a neutron so much smaller than that of an electron in 
radiation beams employed in crystal diffraction? 

I 0. Can a light beam be used in the analysis of crystal structure? Estimate the lattice 
constant for a crystal amenable to analysis by visible light. 

11. Why is the neutron more useful than the proton in structure analysis? 

PROBLEMS 

1. The minimum wavelength observed in x-ray radiation is i. = 1.23 A. What is the 
kinetic energy, in eV, of the primary electron hitting the target? 

2. The edge of a unit cell in a cubic crystal is a= 2.62 A. Find the Bragg angle 
corresponding to reflection from the planes (100), ( 110), ( 111 ), (200), (210) and 
(211 ), given that the monochromatic x-ray beam has a wavelength ). = 1.54 A. 

3. A Cu target emits an x-ray line of wavelength ). = 1.54 A. 
a) Given that the Bragg angle for reflection from the ( 111) planes in Al is I 9.2°, 

compute the interplanar distance for these planes. Recall that aluminum has an 
fee structure. 

b) Knowing that the density and atomic weight of Al are, respectively, 2.7 g/cm3 and 
27.0, compute the value of Avogadro's number. 

4.- a) The Bragg angle for reflection from the ( 110) planes in bee iron is 22° for an 
x-ray wavelength of).= 1.54 A. Compute the cube edge for iron. 

b) What is the Bragg angle for reflection from the ( 111) planes? 
c) Calculate the density of bee iron. The atomic weight of Fe is 55.8. 

5. Establish the validity of (2.11) for an arbitrary origin. 
6. Prove the result of (2.17). 
7. Establish the result (2.20). 
8. Establish the fact that Eq. (2.23) follows from (2.20) and the definitions (2.21) and 

(2.22). 
9. The electron density in a hydrogen atom in its ground state is spherically symmetric, 

and given by 
p(r) = e- lr/ao /rca~, 

where ao, the first Bohr radius, has the value 0.53 A. Compute the atomic 
scattering factor fa for hydrogen, and plot it as a function of s = 2k sin O = 4rc sin OJ} .. 
Explain physically why the scattering factor is small for back reflection (0 = rr/2). 

10. The crystal-structure factor fer depends on the origin of the coordinate system. 
Show that the intensity, which is the observed quantity, is independent of the 
choice of origin. 

11. Evaluate the first subsidiary minimum of S2 (Fig. 2.5b), and show that it is equal 
to 0.04N 2 , in the limit of large N. 

12. The geometrical structure factor Fhk.l for a bee lattice was evaluated in the text by 
assuming the cell to contain one atom at a corner and another at the center of the 
unit cell. Show that the same result is obtained by taking the cell to contain one­
eighth of an atom at each of its eight corners, plus one atom at the center. 

13. Evaluate the geometrical structure factor Fhkl for reflection from the (hkl) planes in 
an fee lattice, and show that the factor vanishes unless the numbers h, k, and I are alt 
even or all odd. 
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14. Which of the following reflections would be missing in a bee lattice: ( 100), (l IO), 
(l 11 ), (200), (210), (220), (21 l )? Answer a similar question for an fee lattice. 

15. Diamond has an fee structure in which the basis is composed of two identical atoms, 
one at the lattice point, and another at a point (a/4, a/4, a/4) relative to the first atom, 
where a is the edge of the cube (see Fig. 2.15). Find the geometrical structure 
factor for diamond, and express it in terms of the factor corresponding to an fee 
Bravais lattice. Which of the reflections in Problem 14 are missing in diamond? 

16. Cesium chloride (CsCl) crystallizes in the bee structure, in which one type of atom 
is located at the corners and the other at the center of the cell. Calculate the 
geometrical structure factor F100, assuming that /~s = 3 fci· Explain why the 
extinction rule derived in the text is violated here. 

I 7. Repeat Problem 15 for GaSb, which crystallizes in the zincblende structure (see 
Section I. 7), assuming that fsa = 2/Ga· 

18. Show that the volume of the reciprocal cell is equal to the inverse of the real 
cell. 

19. Construct the reciprocal lattice for a two-dimensional lattice in which a= 1.25 A, 
b = 2.50 A, and y = 120°. 

20. A unit cell has the dimensions a= 4 A, b = 6 A, c = 8 A, :( = f1 = 90°, y = 120°. 
Determine: 

a) a*, b*, and c* for the reciprocal cell. 
b) The volume of the real and reciprocal unit cells. 
c) The spacing between the (210) planes. 
d) The Bragg angle O for reflection from the above planes. 

21. Show that if the crystal undergoes volume expansion, then the reflected beam is 
rotated by the angle 

JO = - 1'... tan 0 
3 ' 

where y is the volume coefficient of expansion and O the Bragg angle. 
22. Discuss the variation of the intensity with the half scattering angle 0. Include 

the effects of the lattice-structure factor, the geometrical-structure factor, and the 
electron scattering length. 

23. Write an essay on the experimental aspects of x-ray diffraction. 
24. Prove the result (2.52). 
25. A beam of 150-eV electrons falls on a powder nickel sample. Find the two 

smallest Bragg angles at which reflection takes place, recalling that Ni has an fee 
lattice with a cube edge equal to 3.25 A. 



CHAPTER 3 LATTICE VIBRATIONS: THERMAL, 
ACOUSTIC, AND OPTICAL 
PROPERTIES 

3.1 Introduction 
3.2 Elastic waves 
3.3 Enumeration of modes; density of states of a 

continuous medium 
3.4 Specific heat: models of Einstein and De bye 
3.5 The phonon 
3.6 Lattice waves 
3. 7 Density of states of a lattice 
3.8 Specific heat: exact theory 
3.9 Thermal conductivity 

3.10 Scattering of x-rays, neutrons, and light by phonons 
3.11 Microwave ultrasonics 
3.12 Lattice optical properties in the infrared 

We are no other than a moving row 
Of visionary shapes that come and go 

Round with this Sun-illumin' d Lantern held 
In Midnight by the Master of the Show. 

Omar Khayyam 
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Thermal conductivity 
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QUESTIONS 

1. Equation (3.11) gives the allowed values of q in a continuous line under periodic
boundary conditions. Plot a few of the corresponding wavelengths, and compare
with results from elementary physics for, say, a vibrating string.

·2. Determine the density of states for a two-dimensional continuous medium using
periodic boundary conditions. 

3. In the Einstein model, atoms are treated as independent oscillators. The Debye
model, on the other hand, treats atoms as collpled oscillators vibrating collectively.
However, the collective modes are regarded here as independent. Explain the meaning
of this independence, and contrast it with that in the Einstein model.

4. Would you expect to find sound waves in small molecules? If not, how do you
explain the propagation of sound in gaseous substances?

5. Explain qualitatively why the interatomic force constant diminishes rapidly with
distance.

6. Show that the total number of allowed modes in the first BZ of a one-dimensional
diatomic lattice is equal to 2N, the total number of degrees of freedom.

7. Suppose that we allow two masses M1 and M2 in a one-dimensional diatomic lattice
to become equal. What happens to the frequency gap? Is this answer expected?
Compare the results with those of the monatomic lattice.

8. Derive an expression for the specific heat of a one-dimensional diatomic lattice.
Make the Debye approximation for the acoustic branch, and assume that the optical
branch is flat.

9. Figure 3.25(b) shows that the TA branches, as well as the TO branches, in Ge are
degenerate in the [111] direction. Explain this qualitatively on the basis of symmetry.

10. Convince yourself that the BZ of an fee lattice has the shape given in Fig. 3.26(b).
11. Give a physical argument to support the plausibility of (3. 74) for thermal conductivity.
12. Explain the dependence of thermal conductivity on temperature as displayed in

Fig. 3.32(b).
13. In the microwave generator of a miniature semiconductor, a considerable amount of

undesirable heat is generated in the conversion of de to ac power. Explain why
diamond is being increasingly used as a heat sink to transport the heat away from
the device.
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14. Discuss two experimental techniques for measuring the mean free paths of phonons 
in solids. 

I 5. Verify (3.9 I). 
J 6. Verify (3.92). 
17. Draw a figure for a transverse oscillation in an ionic crystal and show that, unlike 

the case of longitudinal oscillations, no charge bunching takes place. 

PROBLEl\1S 

I. The longitudinal and transverse velocities of sound in diamond, a cubic crystal, along 
the [JOO] direction are, respectively, J.76 and 1.28 x 106 cm/s. The longitudinal 
velocity in the [I I I] direction is J .86 x 106 cm/s. From these data, and the fact that 
the density is 3.52 g/cm3 , calculate the elastic constants C 11 , C 12 , and C44 for 
diamond. 

2. In deriving (3.19) for the density of states for a continuous medium, it was assumed 
that the longitudinal and transverse velocities v1 and v, were equal. Derive the 
density of states for a case in which this assumption is no longer true. 

3. It is more convenient in practice to measure the specific heat at constant pressure, 
c,, than the specific heat at constant volume, Ct·• but the latter is more amenable to 
theoretical analysis. 
a) Using a thermodynamic argument, show that the two specific heats are related 

by 

where cz is the volume coefficient of thermal expansion and K the compressibility. 
b) Show that c, - Cv = R for an ideal gas. 
c) Show that c, ::::: Cv for a solid at room temperature. (Look up the needed param­

eters in appropriate reference works, e.g., the Handbook of Chemistry and 
Physics.) 

4. Using the Maxwell-Boltzmann distribution, show that the average energy of a 
one-dimensional oscillator at thermal equilibrium is i = kT. 

5. Prove the result (3.26) for the average energy of a quantum oscillator. 
6. a) If the classical theory of specific heat were valid, what would be the thermal 

energy of one mole of Cu at the temperature T = 00 ? The Debye temperature 
for Cu is 34O°K. 

b) Calculate the actual thermal energy according to the Debye theory (use Fig. 
3.13), and compare with the classical value obtained above. (For the purpose of 
this calculation, you may approximate the Debye curve by a straight line joining 
the origin to the point on the Debye curve at T = 00 .) 

c) What is the order of magnitude of the maximum displacement of a Cu atom at 
the Debye temperature? Compare this displacement with the interatomic distance. 

7. It was stated in the text that the De bye temperature 00 is proportional to ( Y/ M)112, 

where Yis Young's modulus and M the atomic mass. For solids of similar chemical 
and structural characteristics, the parameters Yare nearly equal, andthus00 .-. l/M 112 • 

Plot 00 versus M- 112 for the alkali metals (Li, Na, K, Rb, Cs), the noble metals 
(Cu, Ag, Au), the covalent crystals (C, Si, Ge, Sn), and discuss how well this prediction 
is satisfied. 
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8. Verify the mathematical reasoning between (3.36) and (3.38).
9. a) Derive the expression for the specific heat of a linear continuous chain according

to the Debye theory. Discuss the high and low temperature limits. 
b) Repeat part (a) for a continuous sheet.

10. Determine the phase and group velocities for a monatomic lattice. Plot the results
versus the wave vector q and give a brief discussion of their significance.

l I. When the frequency of a wave in a one-dimensional lattice is greater than the cutoff 
frequency w111 , the wave is heavily attenuated. Assuming that the solution may still 
be expressed in the form (3.55), but with q being an imaginary number, calculate the 
attenuation coefficient, i.e., the coefficient governing the exponential decay of the 
intensity, and plot the result as a function of the frequency. [Hint: Use the formula 
sin iy = i sinh y.] 

12. Verify (3.62) and (3.63 ).
13. Using the optical mode frequency for NaCl (Table 3.3), calculate the interatomic

force constant and Young's modulus for this substance. From these data and the
density (2.18 g/cm3), calculate the velocity of sound in NaCl.

14. What is the minimum wavelength for a wave traveling in the [100] direction in an fee
structure? In the [111] direction? Use Fig. 3.26(a), and assume that the cube edge
of the real unit cell is a = 5 A.

15. Using the density of states (3.69) for a one-dimensional monatomic crystal, show that
the total number of states is equal to N.

16. Using data on thermal conductivity, calculate the velocity of sound in NaCl at
T = 20°K and T = 300°K. Compare your answer with that for Problem 13.

17. In discussing the behavior of the phonon's mean free path we treated the various
collision processes separately. However, in most situations, several of these processes
act simultaneously to scatter the phonon. Show that the effective path in that case
is given by 1// = Li 1//;, where the //s refer to the mean free paths of the individual
collision mechanisms. [Hint: You may use a probabilistic argument. A similar
approach is employed in Section 4.5 in connection with the scattering of electrons
in metals.]

18. The text stated that the equations for the conservation of momentum and energy
for the scattering of a photon by a phonon, Eqs. (3.75) and (3.76), may also be
derived by treating the scattering process as a Doppler-shifted Bragg reflection.
Prove this statement.

19. Brillouin scattering of a monochromatic light beam, 10 = 6328 A, from water at
room temperature leads to a Brillouin sideband whose shift from the central line
is �v = 4.3 x 109 Hz at scattering angle of 90°. Knowing that the refractive index
of water is 1.33, what is the velocity of sound in this substance at room temperature?

20. Fill in the entries left vacant in Table 3.3.
21. Solve for the two polariton dispersion relations from (3.86), and show that the

dispersion curves are as shown in Fig. 3.45.



CHAPTER 4 METALS I: THE FREE-ELECTRON 
MODEL 

4.1 Introduction 
4.2 Conduction electrons 
4.3 The free-electron gas 
4.4 Electrical conductivity 
4.5 Electrical resistivity versus temperature 
4.6 Heat capacity of conduction electrons 
4.7 The Fermi surface 
4.8 Electrical conductivity; effects of the Fermi surface 
4.9 Thermal conductivity in metals 

4.10 Motion in a magnetic field: cyclotron resonance and 
the Hall effect 

4.11 The AC conductivity and optical properties 
4.12 Thermionic emission 
4.13 Failure of the free-electron model 

Freedom has a thousand charms to show, 
That slaves, howe'er contented, never know. 

William Cowper 
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QUESTIONS 

I. Explain the distinction between localized and delocalized (or core) electrons in solids. 
Describe one experimental method of testing the difference between the two types. 

2. The text said that the conduction electrons are better described as a plasma than an 
ordinary gas. In what essential ways does a plasma differ from a gas? 

3. Trace the steps which show that the electrical current of the electrons is in the same 
direction as the field, even though the particles are negatively charged. 

4. Assuming that the conduction electrons in Cu are a classical gas, calculate the rms 
value of the electron speed, and compare the value obtained with the Fermi velocity 
(see Problem I). 

5. Explain why electrons carry a net energy but not a net current in the case of thermal 
conduction. 

6. Show that if the random velocity of the electrons were due to the thermal motion 
of a classical electron gas, the electrical resistivity would increase with the temperature 
as T 312 • 

7. In a cyclotron resonance experiment, part of the signal is absorbed by the electrons. 
What happens to this energy when the system is in a steady-state situation? 

8. Explain qualitatively why the Hall constant Ru is inversely proportional to the 
electron concentration N. 

~9. Demonstrate qualitatively that the Hall constant for a current of positive charges is 
positive. 

10. Equation (4.54) shows that the skin depth b becomes infinite at zero frequency. 
Interpret this result. 

11. Describe the variation of skin depth with temperature. 
12. According to the discussion in Section 4. I 1, free electrons make a negative contribution 

to the dielectric constant, while bound electrons make a positive contribution. 
Explain this difference in electron behavior. 

PROBLEl\1S 

I. Copper has a mass density Pm= 8.95 g/cm3, and an electrical resistivity p = 1.55 x 
10- 8 ohm-m at room temperature. Assuming that the effective mass m* = m0 , 

calculate: 
a) The concentration of the conduction electrons 
b) The mean free time r 
c) The Fermi energy Er 
d) The Fermi velocity vF 

e) The mean free path at the Fermi level Ir 
2. Derive Eq. (4. I 9) for the mean free path. 
3. The residual resistivity for I atomic percent of As impurities in Cu is 6.8 x 10-s 

ohm-m. Calculate the cross section for the scattering of an electron by one As 
impurity in Cu. 

4. Sodium has a volume expansion coefficient of 15xt0- 5 °K- 1 • Calculate the per­
centage change in the Fermi energy EF as the temperature is raised from T = 0°K to 
300°K. Comment on the magnitude of the change. 

5. Repeat Problem 4 for silver, whose volume coefficient of expansion is 18.6x 10- 5 

OK- 1. 
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6. Calculate the Fermi temperatures T F for Cu, Na, and Ag. Also calculate the ratio 
T /T F in each case for T = 300°K. The effective masses of Cu and Na are 1.0 and 
1.2 times m0 . 

7. Estimate the fraction of electrons excited above the Fermi level at room temperature 
for Cu and Na. 

8. Calculate the ratio of electrons to lattice heat capacities for Cu at T = 0.3°, 4°, 20°, 
77°, and 300°K. The lattice heat capacity of Cu is given in Fig. 3.10. 

9. Plot the Fermi-Dirac function f (£) versus the energy ratio£/ EF at room temperature 
T = 300°K. (Assume EF independent of temperature.) If EF = 5 eV, determine the 
energy values at which f (£) = 0.5, 0.7, 0.9, and 0.95. 

10. Cyclotron resonance has been observed in Cu at a frequency of 24 GHz. Given that 
the effective mass of Cu is m* = m0 , what is the value of the applied magnetic field? 

11. Using Table 4.4, giving the Hall constants, calculate the electron concentrations in 
Na, Cu, Cd, Zn, Al, and In. Compare these results with those given in Table 1.1. 

12. a) Using the appropriate values of EL,r• <10 , and r for Ag at room temperature, calculate 
the refractive index n and the extinction coefficient K for Ag, and plot these versus 
w on the logarithmic scale. 

b) Evaluate the optical reflectivity and plot it versus w. (Data on Ag are found in 
Table 4.1.) The values of w may be confined to the range w < 1016 s- 1• 

13. Evaluate the skin depth for Cu at room temperature, and plot the results versus the 
frequency on a logarithmic scale. (Data are given in Table 4.1.) The value of w may 
be confined to w < 1013 s- 1 • 

14. Carry out the integration which leads to (4.61). 
15. Calculate the density of the thermionic emission current in Cs at 500, 1000, 1500, 

and 2000°K. 



CHAPTER 5 METALS II: ENERGY BANDS IN 
SOLIDS 

5.1 Introduction 
5.2 Energy spectra in atoms, molecules, and solids 
5.3 Energy bands in solids; the Bloch theorem 
5.4 Band symmetry in k-space; Brillouin zones 
5.5 Number of states in the band 
5.6 The nearly-free-electron model 
5. 7 The energy gap and the Bragg reflection 
5.8 The tight-binding model 
5.9 Calculations of energy bands 

5.10 Metals, insulators, and semiconductors 
5.11 Density of states 
5.12 The Fermi surface 
5.13 Velocity of the Bloch electron 
5.14 Electron dynamics in an electric field 
5.15 The dynamical effective mass 
5.16 Momentum, crystal momentum, and physical origin 

of the effective mass 
5.17 The hole 
5. I 8 Electrical conductivity 
5.19 Electron dynamics in a magnetic field: cyclotron 

resonance and the Hall effect 
5.20 Experimental methods in determination of band structure 
5.21 Limit of the band theory; metal-insulator transition 

On the surf ace there is infinite variety 
of things; at base a simplicity of cause. 

Ralph Waldo Emerson 
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QUESTIONS 

I. It was pointed out in Sections 6.3 and 4.3 that an electron spends only a little time 
near an ion, because of the high speed of the electron there. At the same time it was 
claimed that the ions are "screened" by the electrons, implying that the electrons are 
so distributed that most of them are located around the ions. Is there a paradox here? 
Explain. 

2. Figure 5. IO(c) is obtained from Fig. 5. IO(a) by cutting and displacing various segments 
of the free-electron dispersion curve. Is this rearrangement justifiable for a truly free 
electron? How do you differentiate between an empty lattice and free space? 

3. Explain why the function iJ,0 in Fig. 5.18(b) is flat throughout the Wigner-Seitz cell 
except close to the ion, noting that this behavior is different from that of an atomic 
wave function, which decays rapidly away from the ion. This implies that the coulomb 
force due to the ion in cell A is much weakened in the flat region. What is the physical 
reason for this? 

4. Band ot•er/ap is important in the conductivity of polyvalent metals. Do you expect 
it to take place in a one-dimensional crystal? You may invoke the symmetry properties 
of the energy band. 

PROBLEMS 

1. Figure 5. 7 shows the first three Brillouin zones of a square lattice. 
a) Show that the area of the third zone is equal to that of the first. Do this by 

appropriately displacing the various fragments of the third zone until the first 
zone is covered completely. 

b) Draw the fourth zone, and similarly show that its area is equal to that of the 
first zone. 

2. Draw the first three zones for a two-dimensional rectangular lattice for which the 
ratio of the lattice vectors a/b = 2. Show that the areas of the second and third 
zones are each equal to the area of the first. 

3. Convince yourself that the shapes of the first Brillouin zones for the f cc and bee 
lattices are those in Fig. 5.8. 

4. Show that the number of al1owed k-values in a band of a three-dimensional sc lattice 
is N, the number of unit cells in the crystal. 

5. Repeat Problem 4 for the first zone of an fee lattice (zone shown in Fig. 5.8a). 
6. Derive Eqs. (5.21) and (5.22). 
7. Show that the first three bands in the empty-lattice model span the following energy 

ranges. 

8. a) Show that the octahedral faces of the first zone of the fee lattice (Fig. 5.8a) are 
due to Bragg reflection from the (111) atomic planes, while the other faces are 
due to reflection from the (200) planes. 

b) Show similarly that the faces of the zone for the bee lattice are associated with 
Bragg reflection from the (I 10) atomic planes. 
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9. Suppose that the crystal potential in a one-dimensional lattice is composed of a series 
of rectangular wells which surround the atom. Suppose that the depth of each well 
is V0 and its width a/5. 
a) Using the NFE model, calculate the values of the first three energy gaps. Compare 

the magnitudes of these gaps. 
b) Evaluate these gaps for the case in which V0 = 5 eV and a= 4 A. 

IO. Prove that the wave function used in the TB model, Eq. (5.27), is normalized to unity 
if the atomic function <Pv is so normalized. [Hint: For the present purpose you may 
neglect the overlap between the neighboring atomic functions.] 

11. The energy of the band in the TB model is given by 

E(k) = Ev - /3 - Y L eik•xi, 
j 

where /3 and y are constants, as indicated in the text, and xi is the position of the jth 
atom relative to the atom at the origin. 
a) Find the energy expression for a bee lattice, using the nearest-neighbor approxima­

tion. Plot the energy contours in the kx-ky plane. Determine the width of the 
energy band. 

b) Repeat part (a) for the fee lattice. 
12. a) Using the fact that the allowed values of kin a one-dimensional lattice are given 

by k = n(2n/L), show that the density of electron states in the lattice, for a lattice 
of unit length, is given by 

g(E) = _l /(dE). 
2n dk 

b) Evaluate this density of states in the TB model, and plot g(E) versus E. 
13. Calculate the density of states for the first zone of an sc lattice according to the empty­

lattice model. Plot g(E), and determine the energy at which g(E) has its maximum. 
Explain qualitatively the behavior of this curve. 

14. a) Using the free-electron model, and denoting the electron concentration by n, show 
that the radius of the Fermi sphere in k-space is given by 

b) As the electron concentration increases, the Fermi sphere expands. Show that 
this sphere begins to touch the faces of the first zone in an fee lattice when the 
electron-to-atom ratio n/ n8 = 1 .. 36, where n8 is the atom concentration. 

c) Suppose that some of the atoms in a Cu crystal, which has an fee lattice, are 
gradually replaced by Zn atoms. Considering that Zn is divalent while Cu is 
monovalent, calculate the atomic ratio of Zn to Cu in a CuZn alloy (brass) at 
which the Fermi sphere touches the zone faces. Use the free-electron model. (This 
particular mixture is interesting because the solid undergoes a structural phase 
change at this concentration ratio.) 

15. a) Calculate the velocity of the electron for a one-dimensional crystal in the TB model, 
and prove that the velocity vanishes at the zone edge. 

b) Repeat (a) for a square lattice. Show that the velocity at a zone boundary is 
parallel to that boundary. Explain this result in terms of the Bragg reflection. 
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c) Repeat for a three-dimensional sc lattice, and show once more that the electron 
velocity at a zone face is parallel to that face. Explain this in terms of Bragg 
reflection. Can you make a general statement about the direction of the velocity 
at a zone face? 

16. Suppose that a static electric field is applied to an electron at time t = 0, at which 
instant the electron is at the bottom of the band. Show that the position of the elec­
tron in real space at time t is given by 

I 
X= Xo +-E(k = Ft/h), 

F 

where x0 is the initial position and F = - e<ff is the electric force. Assume a one­
dimensional crystal, and take the zerp-energy level at the bottom of the band. Is the 
motion in real space periodic? Explain. 

17. a) Using the TB model, evaluate the effective mass for an electron in a one­
dimensional lattice. Plot the mass m* versus k, and show that the mass is indepen­
dent of k only near the origin and near the zone edge. 

b) Calculate the effective mass at the zone center in an sc lattice using the TB model. 
c) Repeat (b) at the zone corner along the [I 11] direction. 

18. Prove Eq. (5.18). 
19. a) Calculate the cyclotron frequency We for an energy contour given by 

h2 hl 
E(k) = -.k; + -. k;, 

2m1 2m2 

where the magnetic field is perpendicular to the plane of the contour. 

[Answer: We= J :2 
*B.] 

m1 m2 

b) Repeat {a) for an ellipsoidal energy surface 

hl h2 
E(k) = * (k; + k;) + ---k;, 

2m1 2m! 

where the field B makes an angle 0 with the kz-axis of symmetry of the ellipsoid. 

[ [ ( e B )2 e2 B 2 ] 112 ] 
Answer: We = m1 cos2 e + mT m; sin2 e . 

20. In Section 5.19 we discussed the motion of a Bloch electron in k-space in the presence 
of a magnetic field. The electron also undergoes a simultaneous motion in r-space. 
Discuss this motion, and in particular show that the trajectory in r-space lies in a 
plane parallel to that in k-space, that the shapes of the two trajectories are the same 
except that the one in r-space is rotated by an angle of -n/2 relative to the other, and 
expanded by a linear scale factor of (h/eB). [Hint: Use Eq. (5.108) to relate the 
electron displacements in r- and k-space.] 

21. Prove Eq. (5.113) for the Hall constant of an electron-hole system. 
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I. In discussing the tetrahedral bond in the Group IV semiconductors (and other
substances), we described the so-called bond model, in which each electron is
localized along the covalent bond line joining the two atoms. Explain how this may be
reconciled with the (delocalized) band model, in which the electron is described by a
Bloch function whose probability is distributed throughout the crystal.

2. Do the bond orbitals of the above bonds correspond to the conduction band or the
valence band? Why?

3. Describe the bond model associated with the electrons in the conduction band of the
group IV semiconductors; i.e., state the spatial region(s) in which these electrons
reside.

4. \Vhat does the breaking of a bond correspond to in the band model?
5. Give one (or more) experimental reason affirming that the electrons associated with the

tetrahedral bond are delocalized.
6. The pre-exponential factor in Eq. (6.8), i.e., the factor preceding e-Egt•a1·, is frequently

referred to as .. the effective density of states of the conduction band." How do you
justify this designation?

7. A cyclotron resonance experiment in 11-type Ge exhibits only one electron line. In
which direction is the magnetic field?

8. Is it possible for a cyclotron resonance experiment in Si to show only one electron
line?

9. Does the fact that a sample exhibits intrinsic behavior necessarily imply that the
sample is pure?

10. An experimenter measuring the Hall effect in a semiconductor specimen finds to his
surprise that the Hall constant in his sample is vanishingly sma11 even at room
temperature. He asks you to help him interpret this result. What is the likely
explanation?

11. In the expression for the electron temperature (6.53), the first power of the field C is
missing. Can you explain this by symmetry considerations? If the general expression
for T

c 
at an arbitrary field, which would be more complicated than Eq. (6.53), were

to be expanded in powers of 8, would you expect the terms C, G3
, 85

, etc., to
appear? Why? Does your argument apply equally well to such materials as Ge and
GaAs?

12. In discussing hot electrons, one finds that the temperature of the electron is greater
than that of the lattice. Can you conceive of a situation in which the temperature of
the electrons might be lower than that of the lattice?

13. Suppose that, in working with a given semiconductor, you use an incident optical
beam which is very strong. Is it possible for a fundamental absorption to take
place even at a frequency v < E,/h?

14. In an intrinsic semiconductor, is the Einstein relation valid for electrons and holes
individually?
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PROBLEMS 

I. Derive (6.13) for hole concentration. 
2. a) Compute the concentration of electrons and holes in an intrinsic sample of Si at 

room temperature. You may take me= 0.7 1110 and mh = m0 • 

b) Determine the position of the Fermi energy level under these conditions. 
3. Given that the pre-exponential factors in (6.8) and (6.13) are t. 1 x 1019 and 

0.51 x 1019 cm - 3 , respectively, in Ge at room temperature, calculate: 
a) The effective masses me and mh for the electron and the hole. 
b) The carrier concentration at room temperature. 
c) The carrier concentration at 77°K, assuming the gap to be independent of 

temperature. 
4. Gallium arsenide has a dielectric constant equal to 10.4. 

a) Determine the donor and acceptor ionization energies. 
b) Calculate the Bohr radii for bound electrons and holes. 
c) Calculate the temperature at which freeze-out begins to take place in an n-type 

sample. 
5. A silicon sample is doped by arsenic donors of concentration t.0 x 1023 m- 3• 

The sample is maintained at room temperature. 
a) Calculate the intrinsic electron concentration, and show that it is negligible 

compared to the electron concentration supplied by the donors. 
b) Assuming that all the impurities are ionized, determine the position of the 

Fermi level. 
c) Describe the effect on the Fermi level if acceptors are introduced in the above 

sample at a concentration of 6.0 x 1021 m- 3 • ,, 

6. Given these data for Si: µe = 1350 cm2/volt-s, µh = 475 cm2/volt-s, and £9 = I.I eV, 
calculate the following. 
a) The lifetimes for the electron and for the hole. 
b) The intrinsic conductivity a at room temperature. 
c) The temperature dependence of a, assuming that electron collision 15, 

dominated by phonon scattering, and plot log a versus 1/T. 
7. Repeat Problem 6 for Ge, using Tables 6.1 and 6.2. 
8. A sample of extrinsic semiconductor is in the shape of a slab whose length is 5 cm, 

width 0.5 cm, and thickness I mm. When this slab is placed in a magnetic field of 
0.6 Wb/m2 normal to the slab, a Hall voltage of 8 mV develops at a current of 
10 mA. Calculate: (a) the mobility of the carrier, (b) the carrier density. 

9. A sample of n-type GaAs whose carrier concentration is 1016 cm - 3 has the same 
dimensions, is in the same field, and carries the same current as in Problem 8. 
Calculate: (a) the Hall constant in this sample, (b) the Hall voltage developed across 
the slab. 

I 0. When we derived the Hall constant in Section 4.10, we assumed that the carrier mass 
is isotropic; the mobility of the carrier is therefore also isotropic. However, we have 
seen that carriers in some semiconductors have ellipsoidal masses. 
a) Show that when current in an n-type Si sample flows in the [100] direction, the 

Hall constant is given by 

3 µ; + 2µ/ 
R= -------~ 

ne (µ1 + 2µ,) 2 ' 
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where Jl1 = er/1111 and µ, = er/111, are the longitudinal and transverse mobility, 
respectively. 

b) Recalling that 111,/111, � 5 in Si, evaluate the Hall constant for 11 = 10 16 cm- 3.

c) What is the value of R, given that the current flows in the (Oto] direction (with the
orientation of the magnetic field appropriately rearranged)? [Hint: Note that the
populations of the six valleys are equal to each other.]

11. a) Show that the density of states corresponding to an ellipsoidal energy surface is

g(E) = _I (�)J/2 (1112 m )112 £112
21t2 1,2 t l , 

where m, and 1111 are the transverse and longitudinal masses, respectively. (The 
energy surface is taken to be an ellipsoid of revolution.) 

b) If we make the replacement m,2 1111 = mJ in the above expression, then g(E) would
have the standard form for a spherical mass, (6.6), with md substituted for me. For
this reason, the mass m

d 
is usually called the density-of-states effective mass.

Taking into account the many-valley nature of the conduction band in Ge, find
md for this substance (expressing the results in units of 1110).

12. \Vhen a carrier has an ellipsoidal mass, e.g., the electrons in Si, the mobility is also
anisotropic. The longitudinal and transverse mobilities µ1 and µr are in inverse ratio to
the masses, i.e., Jl,/Jl

1 
= 111,/111

1
, as follows from (6.31 ). (The collision time 1s

isotropic.) In tables such as Table 6.3, the so-called mobility µ = (µ 1 + 2µ,)/3 1s
usually quoted. (This average is for an ellipsoid of revolution.)
a) Calculate Jl1 and Jlr for silicon.
b) An electric field is applied in the (100] direction, and the field is so high that it heats

the electrons (they become hot). But the valleys are heated at different rates
because of the difference in carrier mobility in the longitudinal and transverse
directions. Indicate which valleys become hotter than others.

c) Calculate the electric field at which the temperature of the hot valleys becomes
1000° K. (The lattice is at room temperature.) Take the energy relaxation time to
be 2 x 10- • 2 s. (Assume the mobility to be independent of the field.)

d) Suppose that the valleys are in quasi-equilibrium with each other; electrons then
transfer from the hot to the cold valleys, and the valleys' populations are no
longer equal. Find the fraction of the total electrons still remaining in the hot
valleys at the field calculated in Problem I 2(c).

e) Discuss the non-ohmic behavior resulting from this ••intervalley transfer.••
Plot J versus 8 up to a field three times the field calculated in Problem 12(c).

13. Estimate the value of the field for which an appreciable transfer of electrons takes
place from the central to the secondary valleys in GaAs. [Hint: The energy absorbed
by an electron in an interval of one lifetime must be of the order of the energy differ­
ence between valleys.]

14. a) Calculate the threshold photon energy for direct fundamental absorption of
radiation in GaAs at room temperature. 

b) Determine the corresponding wavelength.
c) At what wavelength is the absorption coefficient equal to 1000 cm-1?

15. Suppose that you are a solid-state physicist, and a materials engineer asks you: Why
should silicon exhibit metallic luster when viewed in visible light, yet be transparent
when viewed in infrared light? What is your answer?
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16. a) Determine the longest wavelength of light absorbed in ionizing an As donor in Si. 
b) Using data from Table 6.2, repeat Problem I 6(a) for a Ga acceptor in Si. 

17. A slab of intrinsic GaAs, 3 cm long, 2 cm wide, and 0.3 cm thick is illuminated by a 
monochromatic light beam, at which frequency the absorption coefficient is 500 cm- 1• 

The intensity of the beam is 5 x 10- 4 W cm- 2 , and the sample is at room temperature. 
a) Calculate the photon flux incident on the slab. 
b) At what depth does the intensity decrease to 5% of its value at the surface? 
c) Calculate the number of electron-hole pairs created per second in the slab. 

(Assume that the beam entering is totally absorbed through fundamental 
transition.) 

d) Calculate the increase in the conductivity tJ.a due to the illumination. Take the 
recombination time to be 2 x 10- 4 s. [Data: The dielectric constant of GaAs is 
10.4]. 

18. Establish the Einstein relation (6.81) between the mobility and diffusion coefficient. 
Consider a sample in the shape of a rod along which a voltage is applied, but no 
current may flow because the circuit is open. The sample has now both an electric 
field and a concentration gradient. Assume Maxwell-Boltzmann statistics for the 
carriers. 

19. It is found experimentally that the mobility in Ge depends on the temperature as 
T- 1•66• The mobility of this substance at room temperature is 3900 cm2 /volt-s. 
Calculate the diffusion coefficient at room temperature (300°K) and at the 
temperature of liquid nitrogen (77°K). 

20. Suppose that the concentration of electrons in 11-type Ge at room temperature 
decreases linearly from 5 x 1016 cm- 3 to zero over an interval of 2 mm. 
a) Calculate the diffusion current. 
b) What is the value of the electric field required to produce a drift current equal to the 

diffusion current of part (a)? Use the average value of the concentration in 
determining the drift current. 

c) Draw a diagram to show the direction of the field. 
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. . . The morality of art consists 
in the perfect use of an 
imperfect medium 

Oscar Wilde 
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QUESTIONS 

I. Show qualitatively the position of the Fermi level in a p-n junction at equilibrium.
Use a figure similar to Fig. 7.2.

2. In the derivation of the rectification equation in Section 7.2 the approximation was

made that the whole bias voltage appeared across the junction. Does this approxi­

mation hold better for forward or reverse bias? Explain.
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3. Describe a metal-semiconductor junction at equilibrium (McKelvey, 1966). 
4. Suppose that a p-n function at equilibrium is short-circuited with a metallic wire. 

Could the contact potential of the junction drive an electric current in the circuit? 
Explain. Draw the appropriate energy-band diagram for the whole circuit. 

5. Show qualitatively the position of the Fermi level(s) in a biased p-n junction. 
6. When the holes in a p-n-p transistor diffuse through the base, a certain fraction of 

them recombine with electrons and disappear. Does the fact that Si is an indirect-gap 
semiconductor improve or hamper the operation of a silicon transistor? 

7. Suppose that the difference in energy between the bottoms of the central and 
secondary valleys in GaAs is gradually reduced until it vanishes. Do you expect the 
Gunn effect to be observed throughout this range? (Assume that the masses and 
mobilities of the various valleys remain unchanged.) 

8. The wavelength of the coherent radiation emitted from a GaAs laser decreases from 
9000 A to 7000 A as the substance is alloyed with phosphorus, producing the 
compound GaAsP. Explain why. 

PROBLEMS 

I. Establish Eq. (7.6) for the hole current in a forward-biased p-n junction. 
2. The saturation current for a p-n junction at room temperature is 2 x 10- 6 amp. 

Plot the current versus voltage in the voltage range - 5 to 1 volt. Find the differential 
resistance at a reverse bias of I volt and forward bias of 0.25 volt, and compare the 
two values thus obtained. 

3. Derive Eqs. (7.32) by solving the Poisson's equation (7.31), subject to the appropriate 
boundary conditions. 

4. a) Determine the contact potential for a p-n junction of germanium at room 
temperature, given that the donor concentration is 1018 cm- 3 and the acceptor 
concentration is 5 x I 016 cm - 3 • Assume the impurities to be completely ionized. 

b) Calculate the widths of the depletion layer of the junction. 
c) Calculate the electric field at the center of the junction. 
d) The depletion double layer also acts as a capacitor, with the depletion regions on 

the opposite sides of the junction having equal and opposite charges. Evaluate 
the capacitance per unit area of the junction. 

5. Repeat Problem 4 for silicon, whose dielectric constant is 12 £0 • 

6. Using the rectifier equation, determine the differential resistance of a I mm2 p-n 
junction of Ge (Problem 4) under a condition of forward bias at 0.25 volt. Take 
the recombination times Te = Th = 1 o- 6 s. Compare the answer with the resistance of 
an intrinsic sample of the same length as the depletion layer of the junction. 

7. Draw the energy-band diagram for the p-n-p transistor at equilibrium. Plot the 
hole concentration versus the position along the length of the structure. 

8. Repeat Problem 7 with the appropriate biases applied to the transistor. 
9. Derive Eq. (7.38) for the voltage gain in a junction transistor. 

10. Derive Eq. (7.39) for the power gain in a junction transistor. 
11. Describe the operation of an n-p-n transistor, and derive expressions for the 

voltage and power gains in such a structure. 
I 2. Read the description of the operation of the field-effect transistor given in Sze (1969). 

Summarize the physical processes involved and the characteristics of this device. 
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13. Estimate the dopings required for the operation of a GaAs tunnel diode. Take nd = n0 , 

and assume that tunneling becomes appreciable when the horizontal distance of the 
energy gap becomes 75 A. You may employ the results developed in Section 7.3. 

14. a) Using the continuity equation and Poisson's equation, show that an excess 
localized charge in a semiconductor decays in time according to the equation 
Ap(t) = Ap(O)e-t0 , where To= E/<T is the dielectric relaxation time and 
Ap(O) is the initial excess density. 

b) Calculate To for GaAs at low field for a carrier concentration of 1021 m - 3• 

15. Draw a Cartesian coordinate system in which the abscissa represents the product 
n0L and the ordinate the product vL. Mark the various regions in this plane 
corresponding to the Gunn mode and the LSA mode in GaAs. 

16. Look up the derivation of (7.61) for the threshold current in an injection laser 
(Sze, 1969). 

17. The lasing operation in a semiconductor laser may be influenced by several factors, 
such as temperature, pressure, magnetic field, etc. These effects are summarized in 
Chapter 10 of Pankove ( 1971 ). Read this chapter and give a brief summary. 

18. Various procedures for population inversion in semiconductor lasers have been 
employed in addition to the injection technique in a p-n junction. Read the review of 
these procedures given in Pankove (1971), and give a brief summary of the results, 
including diagrams of experimental setups. 
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8.5 Dipolar polarizability 
8.6 Dipolar dispersion 
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When life is true to the poles of nature, the 
streams of truth will roll through us in songs. 

Ralph Waldo Emerson 
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QUESTIONS 

1. Let A and B refer to two different atoms. Using symmetry arguments, determine 
whether the following types of molecules are dipolar or not: AA, AB,ABA (rectilinear 
arrangement), ABA (triangular arrangement), AB3 (planar arrangement with A at 
center of triangle), AB4 (tetrahedral arrangement). Give one example of each type. 

2. The static dielectric constant of water is 81, and its index of refraction 1.33. What is 
the percentage contribution of ionic polarizability? 

3. For a typical atom, estimate the field required to displace the nucleus by a distance 
equal to 1 % of the radius. [Refer to Eq. (8. 79).] 

4. Explain physically why ionic polarizability is rather insensitive to temperature. Do 
you expect a slight change in temperature to lead to an increase or a decrease in the 
polarizability as T rises? Explain. 

5. Referring to Table 6.4, one notes that the polarizabilities of the alkali ions are 
consistently lower than those of the halide ions. Give a physical, i.e., qualitative, 
explanation of this fact. 

6. In the classical treatment of electronic ac polarizability, the restoring force on the 
electron is assumed to have a harmonic form. How do you justify this in view of the 
fact that the force due to the nucleus has a coulomb form which is very different from 
the harmonic form? Give an expression for the natural frequency w0 in terms of the 
properties of the atom. 

7. If one sets w0 equal to zero in (8.85), one obtains the same electron dielectric 
constant found in Section 4.11. Explain why. 
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8. Suppose that a light beam passing through a semiconductor is absorbed either by 
electrons excited from the valence band to the conduction band (fundamental 
absorption), or by excitons. Describe an experimental electrical procedure for testing 
which of these two mechanisms is the operative one. 

PROBLEMS 

I. Using Coulomb's law, derive the expression (8.2) for the field of an electric dipole. 
Assume that d <( r. 

2. a) Derive Eq. (8.3), that is, show that the torque exerted on a dipole p by a uniform 
field 8 is given by 

t = p X If. 

b) Derive Eq. (8.4), that is, show that the potential energy of a dipole in a field is 
given by 

V= - p8 cos 0, 

where O is the angle between the dipole and the field. 
3. The dipole moment for a general distribution of charges is defined as the sum 

p=Iqjrj, 
i 

where Q; and r; are the charge and position, respectively, of the i1h charge, and the 
summation is over all the charges present. The choice of the origin of coordinates is 
arbitrary. 
a) Show that the above reduces to expression (8.1) for the special case of two equal 

and opposite charges. (Take an arbitrary origi,n.) 
b) Prove that if the charge system has an overall electrical neutrality, then the dipole 

moment is independent of the choice of origin. 
4. Determine the dipole moment for the following charge distributions: 1.5 µcoul each at 

the points (0,3), (0,5), where the coordinate numbers are given in centimeters. 
5. A parallel-plate capacitor of area 4 x 5 cm2 is filled with mica (£r = 6). The 

distance between the plates is 1 cm, and the capacitor is connected to a 100-V battery. 
Calculate: 
a) The capacitance of this capacitor 
b) The free charge on the plates 
c) The surface charge density due to the polarization charges 
d) The field inside the mica. (What would the field be if the mica sheet were 

withdrawn?) 
6. Prove that when a molecule is polarized by a field tf, a potential energy is stored in this 

molecule. The value of this energy is ½ ex 8 2, where ex is the molecular polarizability. 
What is the value of this energy for an Ar atom in a field of 103 volt/m? The 
polarizability of this atom is t. 74 x 10- 4 o farad-m 2 • 

7. a) Show that the surface charge density of the polarization charges on the outer 
surface of a dielectric is given by 

up= P -fi, 

where fi is a unit vector normal to the surface. 
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b) Prove Eq. (8.25). That is, show that the depolarization field in an infinite slab, 
in which the field is normal to the slab, is given by 

1 
8 1 =--P. 

Eo 

c) The depolarization field 8 1 depends on the geometrical shape of the specimen. 
When the shape is such that the polarization inside is uniform, the depolarization 
factor L is defined such that 

Show that the depolarization factor for an infinite slab with field normal to the slab 
is I, while for a slab in which the field is parallel to the face,L = 0. Also show that 
L = t for a sphere, and L = 0 or ½ for a cylinder, depending on whether the 
field is parallel or normal to the axis of the cylinder, respectively. Put these 
results in tabular form. 

8. a) Prove Eq. (8.28), showing that the field C 3 due to the dipoles inside a spherical 
cavity vanishes in a cubic crystal. 

b) Suppose that the Lorentz cavity is chosen to have a cubic shape. Calculate the 
field C 2 due to the charges on the surface of this cavity. 

c) Does this new choice of cavity modify the value of the local field? Explain. Use 
your answer to evaluate the field C 3 due to the dipoles inside the cavity. (You may 
take the crystal to be cubic.) 

9. The field 8 3 of Eq. (8.24) due to the dipole inside a cavity depends on the symmetry of 
the crystal, and in general does not vanish in a noncubic crystal. Assuming that this 
field has the form 

where b is a constant, calculate the dielectric constant £, in such a substance. 
10. Show that Eq. (8.33) reduces to (8. 18) in gaseous substances, i.e., substances in 

which Nr:t../Eo is very small. 
11. Establish Eq. (8.40) by carrying out the necessary integration. 
12. a) Expand the Langevin functionL(u) of (8.41) in powers of u up to and including 

the third power in u, and show that 

L(u) = u/3 - u3/45 + · · ·, u ~ 1. 

b) Calculate the field required to produce polarization in water equal to 10% of the 
saturation value at room temperature. 

13. a) Using Fig. 8.13 and Table 8.1, calculate the molecular concentration of CHC1 3 , 

CH 2Cl2, and CH3CI at which the measurements reported in the figure were made. 
b) Calculate the electronic-ionic polarizability cxei in each of these substances. 

14. The molar polarizability of water increases from 4 x 10- 5 to 6.8 x 10- 5 m3 as the 
temperature decreases from 500°K to 300°K. Calculate the permanent moment of the 
water molecule. 

l 5. Calculate the real and imaginary parts of the dielectric constant E;(w) and E;'(w) for 
water at room temperature. Plot these quantities versus w up to the frequency 
1012 Hz. (Use semilogarithmic graph paper.) 
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16. We expressed the absorption in dipolar substances in terms of the imaginary 
dielectric constant, E""(w). It is also frequently expressed in terms of the so-called ,. 
loss angle /j, which is defined as 

II 

~ E",. 
tanu = - I , 

E",. 

where the quantity tan /j is called the loss tangent. 
a) Show that the electric displacement vector is 

D = [ ,2 + ,,2]112 ei6 Jf) E"o E",. £,. 0. 

b) Calculate the loss tangent as a function of the frequency, and plot the result versus 
wr. 

c) Show that the power absorbed by a dielectric (per unit volume) is 

Express the loss angle tan /j in terms of the ratio of the dissipated energy to the 
energy stored in the dielectric. 

d) Calculate the loss tangent in water at room temperature at frequency IO GHz. 
Also calculate the energy dissipated per unit volume, given that the field strength 
is 5 volts/m. 

17. Assuming that the jumping period r decreases exponentially with temperature as in 
(8. 73), explain how the real and imaginary parts of the dielectric constant £; and 
<' vary with temperature. Plot the results versus 1/T. (Assume that all quantities 
other than r are independent of temperature.) Does the loss tangent increase or 
decrease with temperature? Explain. 

18. In deriving the result (8.74) for the dielectric constant involving ionic polarizability, it 
was assumed that the ions experience no collision or loss during their motion. 
Postulate the existence of a collision mechanism whose time is r;, and reevaluate the 
(complex) dielectric constant. Plot the real and imaginary parts E"~(w), E";'(w) 
versus w, and compare with Fig. 8.20. 

I 9. The crystal NaCl has a static dielectric constant E",.(0) = 5.6 and an optical index of 
refraction 11 = 1.5. 
a) What is the reason for the difference between E",.(0) and n2? 
b) Calculate the percentage contribution of the ionic polarizability. 
c) Use the optical phonon for NaCl quoted in Table 3.3, and plot the dielectric 

constant versus the frequency, in the frequency range 0.1 w, to IO w,. 
20. Using the data in the previous problem and Table 8.4, calculate the nearest distance 

between Na and Cl atoms. Calculate the lattice constant of NaCl, and compare the 
result with the value quoted in Table 1.2. (Sodium chloride has an fee structure.) 

21. Calculate the static polarizability for the hydrogen atom, assuming that the 
charge on the electron is distributed uniformly throughout a sphere of a Bohr 
radius. Also calculate the natural electron frequency w0 • 

22. Show that expression (8.80) leads to a static susceptibility equal to that given by 
(8.77). Use elementary electrostatic arguments to find w0 in terms of atomic 
characteristics. 
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23. Modify expression (8.80) for the electronic polarizability to include the presence of a 
collision mechanism of time r. Evaluate the high-frequency dielectric constant, 
both real and imaginary parts. 

24. Carry out the steps leading to the expression (8.86) for E';'(w) due to interband 
transition in solids. 

25. The Kramers-Kronig relations, which lead to (8.88), are derived in Brown (1966). 
Read the discussion there and present your own summary. 

26. a) An acoustic oscillator is made of a quartz rod. Explain why the resonant 
frequency of this osciJlator is given by 

Vs 
v=-

2/' 

where I is the length of the rod and vs the velocity of sound in the specimen. 
b) Show that this frequency is also given by the expression 

v= ;, J;' 
where Y is Young's modulus and p the mass density of the rod. 

c) Taking Y = 8.0 x 1011 dyne/cm2 and p = 2.6 g/cm3 for quartz, cakulate the 
length of a 5-kHz-oscillator. 

d) Calculate the potential difference across the rod for a strain of 2 x 10- 8• 

The piezoelectric coefficient Pf S = 0.17 coul/m2• 

27. Many applications of piezoelectric crystals are discussed in Mason (1950). Make a 
summary of these. 

28. In evaluating the local field correction in (8.97), we neglected the electronic contri­
bution. Reevaluate the correction including this contribution, and cakulate the new 
optical phonon frequency w; and the dielectric constant. 

29. A dielectric has a very small electrical conductivity. However, if a very strong electric 
field is applied, the conductivity suddenly increases as the field reaches a certain high 
value. This phenomenon, known as dielectric breakdown, is due to the fact that a 
strong field ionizes the electrons from their atoms, and as these electrons are 
accelerated they ionize other atoms, etc. Read the discussion of dielectric breakdown 
presented in N. F. Mott and R. W. Gurney (1953), Electronic Processes in Ionic 
Crystals, second edition, Oxford University Press, and write your own review of 
this phenomenon. 

30. The discussion of dielectric and optical properties in the text was limited to the 
linear region, i.e., the field is sufficiently small that polarization is a linear function of 
the field. Nonlinear effects become important at high fields, which are now 
conveniently available from laser sources. Read the discussion of such effects given 
in A. Yariv (1971 ), Introduction to Optical Electronics, Holt, Rinehart, and 
Winston, and write a brief summary. 



CHAPTER 9 MAGNETISM AND MAGNETIC 
RESONANCES 

9.1 Introduction 
9.2 Review of basic formulas 
9.3 Magnetic susceptibility 
9.4 Classification of materials 
9.5 Langevin diamagnetism 
9.6 Paramagnetism 
9.7 Magnetism in metals 
9.8 Ferromagnetism in insulators 
9.9 Antiferromagnetism and ferrimagnetism 

9.10 Ferromagnetism in metals 
9.11 Ferromagnetic domains 
9 .12 Paramagnetic resonance; the maser 
9.13 Nuclear magnetic resonance 
9.14 Ferromagnetic resonance; spin waves 

Where order in variety we see, 
and where, though all things differ, all agree. 

Alexander Pope 
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QUESTIONS 

1. The text stated that the diamagnetic response associated with the orbital motion of 
atomic electrons can be predicted on the basis of Lenz's law. Prove this statement. 

2. Do you expect the constant }. in (9.30) describing the susceptibility of the covalent 
bond to be positive or negative? Why? 

3. Given that the total angular momentum quantum number j for an atom is j = ½, 
does this necessarily mean that the angular momentum is pure spin, and hence 
g = 2? Illustrate your answer with an example. 

4. You may have realized, after reading Section 9.6, that the formula for paramagnetic 
susceptibility is valid only if one considers the ground state of the atom. But other 
excited atomic levels are also present. Explain the following. 

a) Why is it usually permissible to disregard these higher levels when calculating the 
susceptibility? 

b) How you would modify Eq. (9.42), or the original formula from which it is 
derived, if the temperature were high enough for some of the excited levels to be 
appreciably populated? 

5. Given that the precession frequency due to spin-orbit interaction is 10 GHz, estimate 
the effective magnetic field experienced by the spin moment as a result of this inter­
action. 

6. Referring to Questions 4 and 5, estimate the temperature above which the simple 
formula (9.42) breaks down for the strength of spin-orbit interaction given in 
Question 5. 

7. Give a sufficient condition for the existence of paramagnetic susceptibility in terms of 
the number of electrons in the atom (or ion). 

8. The spin paramagnetic susceptibility of conduction electrons is given in (9.47). 
What is its value for a full band? Is the answer surprising? Explain. 

9. Neither Mn nor Cr are ferromagnetic by themselves, yet some of their aJloys (with 
other elements) are. Explain how this may be possible. Refer to Fig. 9.17. 

10. Solid-state theorists often conjecture that any spin system would eventually become 
ferromagnetic at sufficiently low temperature. Can you justify this conjecture in light 
of the discussion in Section 9.8? Given that the dipole-dipole electrostatic interaction 
is the one responsible for such a ferromagnetic transition, estimate the Curie 
temperature. (How would you account for the fact that only relatively few spin sys­
tems are observed in the ferromagnetic phase, even at very low temperatures?) 
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I I. Can the domain structure in a ferromagnetic substance be detected by x-ray 
diffraction? By neutron diffraction? 

12. Equation (9.80) shows that x" decreases as the strength of the signal is increased, a 
phenomenon known as saturation. Explain the physical original of this phenomenon. 
Hint: Think of x" as it relates to the rate of absorption. Also note that the quantum 
picture of the EPR is more helpful in explaining this phenomenon than the 
classical picture. 

13. Explain why the condition r 1r 2 (yb0 ) 2 ~ I is necessary for the observation of EPR. 
Refer to Eqs. (9.78). 

14. Prove Eq. (9.81). 
I 5. The condition of population inversion in a maser is often stated by ascribing a 

negative absolute temperature ( !) to the system. Explain why this is meaningful; 
refer to Eq. (9.83). Calculate the temperature of the system, given that 6£ = l GHz 
and N 2 / N1 = 2. 

16. Is the nuclear factor g" positive or negative for the nucleus illustrated in Fig. 9.39? 
17. The neutron has a magnetic moment (Table 9.10), and yet this particle is electrically 

neutral. Does the existence of this moment puzzle you? Explain. Also discuss how 
such a moment may be possible if one endows the neutron with a submicroscopic 
structure. 

18. What is the precise physical meaning of the word adiabatic in connection with the 
technique of cooling by adiabatic demagnetization? Why are nuclear rather than 
electron spins used at very low temperatures? 

19. The NMR technique is most useful in organic chemistry, due to the proton resonance 
of hydrogen. What are the two other commonest elements in this field of chemistry, 
and why are they not usually useful in NMR? 

20. Another standard technique for observing ferromagnetic substances is by using a 
polarizing microscope. If a thin section is cut off the substance, and the plane of the 
section is normal to the easy-axis direction, then, when one adjusts the polarizing 
filter on the microscope, half the domains appear bright and the other half dark. 
Explain why. 

21. Using the fact that the specific heat of the spin system is C ,_ T 312 at low temperature, 
give a physical derivation for the dependence of the magnon density of states g(w) 
on w in the long-wavelength region. Compare your result with the answer given in 
Problem 25. 

PROBLEMS 

1. Prove the validity of Eqs. (9.3) and (9.4). 
2. Establish the result (9.6). 
3. a) Prove the Larmor theorem, i.e., that a classical dipole µ in a magnetic field B 

precesses around the field with a frequency equal to the Larmor frequency 
wL = eB/2m. 

b) Evaluate the Larmor frequency, in hertz, for the orbital moment of the electron in 
a field B = I W/m2• 

c) What is the precession frequency for a spin dipole moment in the same field? 
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4. The diamagnetic susceptibility due to the ion cores in metallic copper is -0.20x 10- 6 • 

Knowing that the density of Cu is 8.93 g/cm3 and that its atomic weight is 63.5, 
calculate the average radius of the Cu ion. 

5. a) The susceptibility of Ge is - 0.8 x 10- 5 • Taking the radius of the ion core to be 
0.44 A, estimate the percentage of the contribution of the covalent bond to the 
susceptibility. Germanium has a density of 5.38 g/cm3 and an atomic weight of 
72.6. 

b) Given that the applied field is :YI'= 5 x 104 amp· m- 1, calculate the magne­
tization in Ge; also the magnetic induction. 

6. A system of spins (j = s = ½) is placed in a magnetic field :YI'= 5 x 104 amp· m. 
Calculate the following. 

a) The fraction of spins parallel to the field at room temperature (T = 300°K). 

b) The average component of the dipole moment along the field at this temperature. 

c) Calculate the field for which fiz = ½ /l8 • 

d) Repeat parts (a) and (b) at the very low temperature of 1°K. 

7. Establish the result (9.42) for an arbitrary value of j. (This result is derived under the 
condition µ8 B /4; kT .) Estimate the field below which the result is valid at room 
temperature. 

8. Prove that the average dipole moment of an atom, including the effect of the spin-orbit 
interaction, is given by µavg= g(- e/2m)J, where the Lande factor g is given by 
(9.45). 

9. Verify the theoretical values of p given in the third column in Table 9.3. 
I 0. Repeat Problem 9 for the third and fourth columns in Table 9.4. 
11. a) The spin susceptibility of conduction electrons at T = 0°K is given in Eq. (9.47). 

Express this result in terms of the electron concentration for an energy band of 
standard form. 

b) Calculate the spin susceptibility for K, whose density is 0.87 g/cm3 and whose 
atomic weight is 39.1. 

c) Calculate the diamagnetic susceptibility of the conduction electrons in K. 

d) Using the above results and Table 9.5, calculate the average radius of the K ion in 
the metallic state. 

12. Iron has a bee structure with a lattice constant a = 2.86 A. 

a) Using the value of the saturation magnetization in Table 9.6, show that the 
dipole moment of an Fe atom is equal to 2.22 µ8 . The density of Fe is 7.92 g/cm 3, 

and its atomic weight is 55.6. (You may assume, for the present purpose, that the 
3d electrons are completely localized.) 

b) Calculate the Weiss exchange constant A and the molecular field in iron. 

c) Evaluate the Curie constant in iron. 

d) Estimate the exchange energy for a dipole interacting with its nearest neighbors. 

13. Repeat Problem 12 for Co (hep, a = 2.51, c = 4.1 A), and Ni (hep, a = 2.66, 
c = 4.29 A). The densities of Co and Ni are 8.67 and 9.04 g/cm3 , respectively. 

14. a) Applying the Weiss model, with two exchange constants ). 1 and ).2 , to an anti-
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ferromagnetic substance, derive the Neel formula for the susceptibility at high 
temperature [Eq. (9.59)]. 

b) Evaluate the exchange constants ). 1 and ). 2 for MnF2 • 

c) Explain why ). 2 > ). 1• 

I 5. Carry out the steps leading to Eq. (9. 72). 
16. a) Discuss the splitting of a Cr3 + ion in a static magnetic field. 

b) Calculate the field for which the electron resonance for this ion occurs at IO GHz. 

17. Solve the Bloch equations (9.66) and (9.67) in the presence of a static field B0 but in the 
absence of the signal, and show that the magnetization spirals toward its equilibrium 
value as described in Fig. 9.33. Take the initial angle between magnetization and the 
field to be 10°, the longitudinal and transverse time to be 10- 6 and 5 x w- 1 s, 
respectively, and plot the longitudinal and transverse components of the magneti­
zation versus time, in the interval O < t < 5 x 10- 6 s. 

18. Carry out the steps leading to Eq. (9. 78). 
19. Nuclear magnetic resonance in water is due to the protons of hydrogen. 

a) Find the field necessary to produce NMR at 60 MHz. 

b) Find the maximum power absorbed per unit volume, given that the strength of 
the signal is such that r 1r 2y2 b5 = I and r 1 = r 2 = 3 s. 

20. Carry out the steps leading to (9. l00). 
21. Many microwave magnetic devices are discussed in Lax and Button ( 1962). Make a 

brief study of these devices, and present a review report. 
22. The text said that spin waves are modes which describe the collective excitations of a 

spin system. It also pointed out the close analogy between spin waves (magnons) and 
lattice waves (phonons). What is the spin mode of excitation analogous to the 
Einstein mode in the lattice? That is, what are the localized spin excitation modes? 
Assuming that these are the only modes of excitation possible (which is incorrect), 
calculate the magnetization and spin specific heat for the system as functions of the 
temperature. 

23. Discuss why spin waves are more favorable as modes of excitation than local spin 
modes, particularly at low temperatures. 

24. Determine the expressions for the phase and group velocities of spin waves. 
Calculate the group velocity in iron at wavelength }. = I cm. (Use results of 
Problem 12.) 

25. Show that the magnon density of states g(w) in the long-wavelength limit is given by 
g(w) = (¼1t2) {ft/ J' 52 0 2)3;2 x w112. 

26. Many ferromagnetic, ferrimagnetic, and antiferromagnetic substances, such as the 
oxides and chalcogenides of the 3d transition metals, exhibit a small amount of 
electrical conductivity, i.e., they are semiconductors. Although we have not 
discussed this subject here, it is a lively area of research today and is reviewed in 
depth in J. P. Suchet, 1971, Crystal Chemistry and Semiconduction, New York: 
Academic Press. Study the highlights of this book and write a review report. 



CHAPTER 10 SUPERCONDUCTIVITY 

I 0.1 Introduction 
I 0.2 Zero resistance 
I 0.3 Perfect diamagnetism, or the Meissner effect 
I 0.4 The critical field 
10.5 Thermodynamics of the superconducting transition 
I 0.6 Electrodynamics of superconductors 
10.7 Theory of superconductivity 
10.8 Tunneling and the Josephson effect 
10.9 Miscellaneous topics 

Take her up tenderly, 
Lift her with care; 
Fashion' d so slenderly 
Young, and so fair! 

Thomas Hood 
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QUESTIONS 

I. What is the expected composition of a ZrNb alloy which has the highest Tc? Answer 
the same question for a NbSn alloy. 

2. It was stated, following Eq. (I 0.12) that the critical field ~c(O) is essentially 
proportional to the critical temperature Tc. (This will also be confirmed by your plot 
in Problem 3.) Yet the electron concentration 11 also appears in (I 0.12), and this 
concentration differs from one superconductor to another. Why does the linear 
relationship still hold, nonetheless? 

3. Discuss at least two different experimental methods for determining the critical 
temperature of a superconductor. 

4. Experiments show that even though a superconductor exhibits zero static resistance, 
its ac resistance is finite, albeit very small. Explain how this is possible. [Hint: Use 
the two-fluid model. An electric circuit representation is also useful.] 

5. Derive Eq. ( I 0.29) for the surface current in a superconductor. 

6. A footnote in Section 10.5 said that the gap 6.(T) decreases with temperature 
because of the collective nature of the superconducting transition. Explain this point 
more fully, relying on the concept of the Cooper pair. 

7. Is the superconductor-normal junction of Fig. I 0.19(a) electrically symmetric, or not? 

8. A cylinder in the intermediate state is :,hown in Fig. 10.21 (b). Describe one 
experimental electrical method for distinguishing this state from the superconducting 
state shown in Fig. I0.2t(a). 

PROBLEMS 

1. Consider a lead solenoid wound around a doughnut-shaped tube. The total number of 
turns is 2500, and the diameter of the lead wire is 30 cm. The solenoid is cooled below 
the critical point, at which an electric current is induced in the coil. Assuming the lead 
resistivity in the superconducting state to be less than 10- 25 ohm-m, calculate the 
minimum time interval needed for the current to damp out by 0.01%. (Assume the 
length of the wire to be sufficiently large for the infinite-length approximation to hold.) 

2. a) Figure 10.7 indicates a discontinuity in specific heat at the transition point as the 
substance becomes superconducting. The size of the discontinuity can be 
calculated using a thermodynamical argument. Show that the size of the 
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discontinuity per mole is given by 

where V m is the molar volume. 

b) Calculate this difference for tin, and compare your answer with the value given in 
Figure I0.7. The density and atomic weight of tin are 7.0 g/cm2 and 119, 
respectively. [Him: In part (a), recall that 

oS 
C=T­cT and 

2£ 
S=--<1T • 

where S is the entropy and £ the free energy of the system.] 

3. Plot £ c(O) versus Tc for a few superconductors using data from Tables I 0. I and 
10.2, and verify the linear relationship predicted in Eq. ( 10. I 2). 

4. The superconducting gap d(T) decreases with temperature, as indicated in Fig. 10.12. 
The BCS theory shows that this decrease is given by d(T )/d0 = tanh 
(Tcd(T )/Td0 ), for T < Tc. Using this relation and Table 10.4, plot d(T) versus T 
for tin, in the range 0 < T < Tc. 

5. Section 10.5 said that the exponential behavior of the specific heat ( 10.5) implies the 
existence of an energy gap. This can be seen most readily by calculating the specific 
heat of an intrinsic semiconductor, in which the gap plays a very important role. 
Carry out this calculation, and establish the exponential behavior indicated above. 

6. The London equation ( I 0.21) is equivalent to the condition of perfect diamagnetism of 
a superconductor. A basic (and controversial) question often arises: Which is the 
more electrodynamic property of a superconductor, perfect conductivity or perfect 
diamagnetism? By this we mean: Does one of these two properties imply the other, 
or are they independent? Answer this question. [Hint: Note that the electric field and 
magnetic induction are related to each other by the Maxwell equations, in particular, 
C = - o A/ct and B = V x A, where A is the vector potential.] 

7. Prove that the magnetic flux linking a superconducting ring is quantized according to 
<l> = n(h/2e), where <l> is the flux and 11 an integer. This quantization was predicted by 
F. London ( 1950), and verified experimentally in I 96 I. [Hint: Use the Wilson­
Sommerfeld quantization condition, t and take the path of integration in the 
interior of the ring. Recall also that the momentum of an electron in a magnetic 
field is given by p = m v + e A.] (The quantization formula given by London was 
actually erroneous in one respect, because the concept of the Cooper pair was 
unknown in 1950. What do you expect the original London formula to have been?) 

8. Discuss the Josephson tunneling current, given that, in addition to the static bias, an 
alternating voltage is also impressed across the junction. Enumerate the frequencies 
of the various modes of excitation. 

t This condition is fp;dqi = nh, where 11 is an integer, and qi and P; are a coordinate and 
its conjugate momentum. Thus the Bohr condition for quantizing the angular momentum, 
L = nh, can be obtained from the integral by taking qi= 0 and Pi = L, where O is the 
angle and L the angular momentum. 
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9. The coherence length ~ of a superelectron, which is the spatial extension of a super­
electron (or of a Cooper pair), may be viewed as the quantum uncertainty in the 
position resulting from the uncertainty in the electron energy. Estimate the value of 
this coherence length for a typical superconductor. 

l 0. Applications of superconductivity to the design of technical devices, including 
superconducting magnets, are discussed in Newhouse ( l 964) and Williams (1970). 
Study the highlights of these books and write a brief report. 



CHAPTER 11 TOPICS IN METALLURGY AND 

DEFECTS IN SOLIDS 

I I. I Introduction 

11.2 Types of imperfections 

11. 3 Vacancies

11.4 Diffusion 

11.5 Metallic alloys 

11.6 Dislocations and the mechanical strength of metals 

11. 7 Ionic conductivity

11.8 The photographic process 
11.9 Radiation damage in solids 

Truth is never pure, and rarely simple. 

Oscar Wilde 
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Dislocations 

W. C. Dash and A. G. Tweet, ··observing Dislocations in Crystals," Scientific American, 
205, I 07 ( 1961) 

A. H. Cottrell, 1964, The Mechanical Properties of Maller, New York: John Wiley 
J. Weertman and J. R. Weertman, l 964, Elementary Dislocation Theory, New York: 

Macmillan 
J. Friedel, I 964, Dislocations, Reading, Mass.: Addison-Wesley 
A. H. Cottrell, 1953, Dislocations and Plastic Flow in Crystals, Oxford: Oxford University 

Press 
W. T. Read, 1953, Dislocations in Crystals, New York: McGraw~Hill 
N. F. Mott, 1956, Atomic Structure and rite Strength of Metals, New York: Pergamon 

Press 

Ionic conducth·ity: the photographic process 

F. C. Brown, 1967, The Physics of Solids, New York: W. A. Benjamin 
N. F. Mott and R. W. Gurney, 1948, Electronic Processes in Ionic Crystals, second 

edition, Oxford: Oxford University Press; also in paperback, by Dover Press 

Radiation damage 

A. C. Damask and G. J. Dienes, 1963, Point Defects in Metals, London: Gordon and 
Breach 

Radiation Damage in Solids, Proc. of the International School of Physics, ··Enrico Fermi/' 
New York: Academic Press, 1962 

QUESTIONS 

l. The text said that vacancy concentration is normally measured in quenched samples, 
at room temperature. 
a) Why is it necessary to quench the sample, rather than to cook it slowly? 
b) Is the quenched sample in thermal equilibrium? 
c) If the vacancies in a quenched sample are annealed out under adiabatic conditions, 

will the solid heat up or cool down? And by how much? 
2. What is the justification for calling Eq. (11.16) the ··1ever formula?" 
3. What is the meaning of the fact that the solidus and liquid us lines in the phase diagram 

converge at the endpoints? 

PROBLEI\-IS 

1. a) Calculate the atomic percentages of interstitials and vacancies at the melting point 
in Cu (1356°K). The formation energies for these defects in Cu are, respectively, 
4.5 and l .5 eV. 

b) Repeat the calculations at room temperature. 
2. Verify that expression 11.7 satisfies both Fick's second law (1 l .6) and the initial 

conditions of the problem. 
3. a) Carry out the integrations leading to the diffusion distance ( 11.8). 

b) Calculate the diffusion velocity, and explain physically why this velocity decreases 
in time, as it does. 
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4. The text estimated that an atom in a crystal diffuses a distance of about Iµ in two 
years, if the lattice constant d = 1 A and the jump frequency is 1 s. Estimate the 
distance the atom would travel in the same time interval if the atom were able to jump 
always in the same direction, e.g., to the right. 

5. Other solutions to Fick's second law, besides the one reported in the text, are 
frequently quoted in the literature. These solutions correspond to boundary 
conditions different from those chosen here. Verify that the expression 

c(x, t) = ~ 1 - -=- e-"2 dn 
C [ 2 f x/2(Dt)l/2 ] 

2 .Jrr o 

is also a solution of Fick's law corresponding to the following initial conditions: 
c(x,0) = c0 , for x < 0, and = 0 for O < x. Plot c(x, t) versus x at various instants 
(0 < t), and show that c(O, t) = ½ at all times. [The term in the brackets involving the 
integral is known as the error function, and denoted by erf (x/2(Dt)112).] 

6. The diffusion activation energy of carbon in y-iron (austenite) is 3.38 x 104 cal/mole, 
and D0 = 0.21 cm2 /sec. Calculate the diffusion coefficient at 800°C and l 100°C. 

7. The carburizing of steel is accomplished by placing iron in a carbon-rich atmosphere, 
and allowing sufficient time for the carbon atoms to diffuse through the solid. If you 
want to achieve a carbon concentration of 1% (in weight) at a depth of 3 mm after 10 
hours of carburizing time at I 200°C, calculate the carbon concentration in weight per 
cent which must be maintained at the surface. Take the iron to be in they-phase, and 
use the data of Problem 6. [Hint: Use the solution given in Problem 5.] 

8. The atomic size factor favors solid solubility for the following alloys. What is the 
effect of the relative valency factor in each case? 

9. 

Solvent: Cu Ge Sn Ag 

I I I I 
Solute: Si Si Ag Mg 

a) Construct the phase diagram for the Cu-Ni alloy, using the following data 
(Moffat, 1964). 

Weight% Ni 0 20 40 60 80 100 

Liquidus T 1083 1195 1275 1345 1410 1453 

Solidus T 1083 1135 1205 1290 1375 1453 

b) Starting with a liquid alloy of 60% Ni and cooling it gradually, state the 
composition of the solid that forms first. 

c) How much solid per kilogram can be extracted from the melt at I 300°C? 
IO. Establish the validity of Eq. (11.20) for the free energy. 
11. Find the derivative of the mixing entropy (oS/oc), and show that it is infinite at c = 0. 
12. Referring to Fig. 11.13(a), show that the free energy for a phase mixture (where the 

concentrations of the phases are given by c' and c") is given by the straight line F' F" 
in the average concentration range c" < c < c'. 

13. Prove the lever formula for a phase mixture whose free-energy diagram has the shape 
shown in Fig. I l.13(b). 
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14. Confirm that the free-energy diagrams of Figs. 11.IS(a)-11.IS(d) lead to the phase 
diagram 11.1 S(f). Indicate on this latter figure suitable values for the temperatures 
T, T ', T ", and T "' indicated in the former figures. 

15. The phase diagram for the Cu-Ag alloy is shown in Fig. 11.1 S(f). 
a) Confirm that the atomic% and weight % scales indicated are consistent with each 

other. 
b) Determine the atomic percentage of the ex-phase at the eutectic concentration just 

after solidification. 
c) Determine the percentage of the same phase at the temperature 850°C, and the Cu 

concentration in atomic %-
16. a) Starting with a Cu-Ag alloy in the liquid phase and 60% weight Cu, indicate the 

various phases which appear as the system is cooled progressively from the liquid 
to the solid phase. 

b) What is the weight fraction of the p phase at 850°C? 
17. Prove that the Fermi surface begins to touch the boundaries of the Brillouin zone in the 

fee and bee structures when the electron/atom ratios are 1.36 and 1.48, respectively. 
(Refer to Fig. 5.8.] 

18. Show that the shear strain on any crystal plane vanishes if the solid is placed under 
hydrostatic pressure. 

19. a) Show that in an fee lattice the ( 111) planes have the highest atomic concentration. 
b) Show that the (100] direction in the (111) plane has the highest atomic 

concentration. 



CHAPTER 12 MATERIALS AND SOLID-STATE 
CHEMISTRY 

12.1 Introduction 
12.2 Amorphous semiconductors 
12.3 Liquid crystals 
12.4 Polymers 
12.5 Nuclear magnetic resonance in chemistry 
12.6 Electron spin resonance in chemistry 
12. 7 Chemical applications of the Mossbauer effect 

Invention breeds invention. 
Ralph Waldo Emerson 
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V. I. Gol'Dansky, I 964, The Mossbauer Effect and its Applications in Chemistry, New 
York: Consultants Bureau 

L. May, editor, 1971, An Introduction to Mossbauer Spectroscopy, New York: Plenum 
D. A. O'Conner, .. The Mossbauer Effect," Contemp. Phys. 9, 521, 1968 
G. K. Wertheim, 1964, Mossbauer Effect, New York: Academic Press 

QUESTIONS 

I. For the magnetic fields used, the magnetic energy is too small compared to the thermal 
energy, and hence the field does not orient single molecules; yet the field does orient 
the director. How do you resolve this apparent paradox? 

2. Suppose that you prepare a mixture of two cholesteric liquid crystals which rotate the 
polarization in opposite senses. What is the phase of the product? 

3. Could expression (12.8) be valid for a cholesteric liquid crystal? If not, find a 
plausible expression. 

4. Show that the asymmetry parameter 11 (in a Mossbauer effect) vanishes for a solid 
which has a 3-fold axis of symmetry. 

PROBLEMS 

I. Read the articles by Adler (1971) and Owen (I 970), and write a brief report. 
2. Derive expression (12.3) for conductivity. 
3. Prove that if the molecules in a nematic phase have random orientations, the order 

function S vanishes. 
4. Plot the intermolecular anisotropic potential in the nematic phase Vii versus the angle 

0 between the molecular axes of the two molecules involved, and point out the most 
favorable orientations. 

5. Derive Eq. (12.9) for the orientational magnetic energy density. 
6. Derive Eq. ( 12.11 ). 
7. The molecular weight of a polyethylene molecule is 100,000. What is its length if the 

length of the C-C bond is 1.54 A? 
8. The monomer isoprene 

H2C = C - C = CH2 
I I 

CH3 H 

is the basic unit in natural rubber. Draw the complete molecular structure of rubber. 
What feature of this structure allows vulcanization to take place (the formation of 
sulfur cross links between adjacent chains)? 

9. The difference in chemical shifts between two protons in a 60-MHz field is 700 Hz. 
What would be the difference in a JOO-MHz field? 

10. The proton resonance of a substance dissolved in TMS occurs at - 500Hz relative to 
the standard. Calculate b and r for the proton. 

11. The NMR spectrum of 19F (/=½)in olefin, C3H4 F2, consists of two sets of peaks: 
A doublet of doublets with coupling constants at 45 and 10 Hz, respectively. 
The other set of peaks consists of a quadruplet with coupling constants of 45 and 8 Hz, 
respectively. 
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a) Determine the structure of this compound. 
b) Predict the proton NMR spectrum for olefin. 

12. The frequency-shift formula (12.33), derived in the text on the basis of the Doppler 
effect, may also be obtained from the laws of conservation of energy and momentum. 
Carry out this derivation. 

13. Derive Eq. (12.34). 
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